Impulsive Fractional Differential Inclusions and Almost Periodic Waves

نویسندگان

چکیده

In the present paper, concept of almost periodic waves is introduced to discontinuous impulsive fractional inclusions involving Caputo derivative. New results on existence and uniqueness are established by using theory operator semigroups, Hausdorff measure noncompactness, fixed point theorems calculus techniques. Applications a class fractional-order gene regulatory network (GRN) models proposed illustrate results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Impulsive Fractional Differential Inclusions with Anti–periodic Boundary Conditions

In this paper, we prove the existence of solutions for impulsive fractional differential inclusions with anti-periodic boundary conditions by applying Bohnenblust-Karlin’s fixed point

متن کامل

Filippov’s Theorem for Impulsive Differential Inclusions with Fractional Order

In this paper, we present an impulsive version of Filippov’s Theorem for fractional differential inclusions of the form: D ∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, α ∈ (1, 2], y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, . . . ,m, y(t+k )− y (t−k ) = Ik(y (t−k )), k = 1, . . . ,m, y(0) = a, y′(0) = c, where J = [0, b], D ∗ denotes the Caputo fractional derivative and F is a setvalued ma...

متن کامل

Impulsive Partial Hyperbolic Differential Inclusions of Fractional Order

In this paper we investigate the existence of solutions of a class of partial impulsive hyperbolic differential inclusions involving the Caputo fractional derivative. Our main tools are appropriate fixed point theorems from multivalued analysis.

متن کامل

Fractional Order Impulsive Partial Hyperbolic Differential Inclusions with Variable Times

This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.

متن کامل

First Order Impulsive Differential Inclusions with Periodic Conditions

In this paper, we present an impulsive version of Filippov's Theorem for the first-order nonresonance impulsive differential inclusion y (t) − λy(t) ∈ F (t, y(t)), a.e. characterize the jump of the solutions at impulse points t k (k = 1,. .. , m.). Then the relaxed problem is considered and a Filippov-Wasewski result is obtained. We also consider periodic solutions of the first order impulsive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9121413